G Chir Vol. 37 - n. 3 - pp. 123-129
May-June 2016

The coexistence of primary hyperparathyroidism and thyroid nodules: should the preoperative work-up of the parathyroid and the thyroid diseases be specifically adjusted?

G. SCERRINO1, M. ATTARD2, C. LO PICCOLO1, A. ATTARD3, G.I. MELFA1, C. RASPANTI1, M. ZARCONE4, S. BONVENTRE1, S. MAZZOLA4, G. GULOTTA1

Introduction and objectives. Primary hyperparathyroidism (PHPT) can be found in concomitance with thyroid disease (TD) in a high frequency of cases. In this context the diagnostic exams for localizing the enlarged parathyroid(s) gland(s) could be less reliable or non-conclusive. Moreover, the thyroid carcinoma seems to be more frequent compared to that isolated thyroid disease and, therefore, carefully investigated. The main goal of the present study is to evaluate which diagnostic tool (US, MIBI) is more reliable for localizing the site of the PTH hypersecretion and to confirm if it is always advantageous a combination of both exams. Besides, we evaluated the incidence of thyroid carcinoma in our series of patients.

Patients and methods. A review of available data of 75 patients who underwent total thyroidectomy + parathyroidectomy from 2003 and 2014 was performed. The preoperative workup included systematically US and MIBI whose results were considered true positive when at least the side (left/right) of the parathyroid affected were concordant with the surgical report, settled as the gold standard, according to the Cox non-nested model. The connection between the diagnostic results of US versus MIBI was calculated with the Cohen K index for evaluating their overlap. The average of the thyroid carcinoma were also calculated.

Results. The difference between respectively US versus surgical report (p value=0.73) and MIBI versus surgical report (p value=0.81) were not significant. The low Cohen K index showed that both US and MIBI are complementary. In 23 patients (32,9%) a thyroid carcinoma was found.

Conclusions. The association of MIBI and neck US is mandatory in the first evaluation of patients undergoing thyroidecid and parathyroid excision simultaneously. The high prevalence of thyroid carcinoma in this specific context suggests a more aggressive diagnostic and surgical behaviour.

KEY WORDS: Primary hyperparathyroidism - Thyroid disease - MIBI.
Study design

The present institutional retrospective study involved a cohort of patients evaluated preoperatively for both diseases and scheduled for thyroidectomy and parathyroidectomy. The main goal was to evaluate which diagnostic tool (US, MIBI) is more reliable for localizing the parathyroid gland responsible for PTH hypersecretion and to confirm if it is always advantageous to combine systematically US and MIBI; secondly, if the intraoperative diagnostic tools (intraoperative PTH dosage, intraoperative scintigraphy) play a role, and in which measure; finally, the complication’s rate of thyroidectomy and parathyroidectomy simultaneously performed.

We performed a review of available data of patients who underwent total thyroidectomy + parathyroidectomy from 2003 and 2014 including all patients with a diagnosis of PHPT and any thyroid disease (multinodular goiter [MNG], multinodular toxic goiter [MNTG], Plummer disease [PD], Grave’s disease [GD], thyroid carcinoma, [TC]) with or without signs of auto-immunity, for whom medical records were completely available, from the preoperative assessment to the follow-up (≥ 6 months).

The patients that have previously undergone subtotal thyroidectomy, thyroid lobectomy, neck re-explorations for recurrent/persistent PHPT, the patients operated on for lymph node dissection (central and/or lateral) simultaneously or subsequently the thyroidectomy (25-26) and the patients suffering from secondary hyperparathyroidism were excluded from the study. The patients with a family history of multiple endocrine neoplasia or familial HPT, as well as the patients with incomplete records or lack of laboratory tests respect to PHPT, US for thyroid/parathyroid disease or MIBI were also excluded. Finally, we did not include in the cohort the patients where the diagnosis of PHPT had been made during surgical exploration. Follow-up was carried out by outpatient consultation.

The ethical standards of Declaration of Helsinki (1964) and its later amendments were strictly observed. Altogether 73 patients (59 women, 14 men) were enrolled in the present study. The mean age was 60 years (range: 26-81). The data were obtained from medical records available.

Patients and methods

Data collected included demographics (sex, age); serum calcium levels (mg/dl; normal range: 8.4-10); preoperative PTH value (pg/ml; normal range: 15-65); exams carried out for identifying the TD (US, fine-needle aspiration biopsy [FNAB]) and its exact diagnosis (MNG, MNTG, PD, GD, TC); results of preoperative parathyroid US and MIBI (concerning the localization of the enlarged gland); surgical report (localization of the parathyroid[s] responsible for the PHPT) and its accordance with preoperative US and MIBI; results of intraoperative PTH dosage; results of intraoperative scintigraphy (if made); final histologic findings (thyroid/parathyroid); complications (transient and definitive hyperparathyroidism; transient and definitive vocal fold paralysis); follow-up (recurrence of hyperparathyroidism).

The preoperative workup included systematically US (performed a linear 7.5MHz probe) with the aim to identify enlarged parathyroid gland(s) and morpho-volumetric features of the thyroid (size, nodules, color Doppler pattern). In particular, the nodules were examined looking for its size, shape, echoic structure (hyper - normo - hypoechoic), intralesional calcifications, halo-sign, intralesional vascular signal. Any suspicious sign for carcinoma led us to perform a FNAB. Both US and tissue sampling for FNAB were performed by a surgeon (GS) experienced in neck US.

The MIBI technique was performed using the single tracer, double-phase protocol. A dose of 370-450 MBq of 99mTc-MIBI was injected intravenously 15 minutes (early scan) and two hours (late scan) before the planar acquisition of the images of the head and mediastinum. The late acquisition showed the wash out of the radioactive tracer from the thyroid gland and the persistence in the parathyroid one.

The surgical exploration were always performed with a conventional “open” thyroidectomy (skin incision length: 3.5 - 5 cm). A wide, bilateral parathyroid exploration, needed to remove the enlarged gland(s) was always performed before the thyroid resection and, if needed, after its removal as well.
The i.o. PTH was then performed collecting blood samples: at the preoperative time; 5 minutes after excision; 20 minutes after excision. A PTH drop ≥ 50% and at all events under the threshold limiting value (65 pg/ml) was considered successful. The three blood samples for each patient were carried by a resident carrier at the Clinical Analysis Institutional Service, were the PTH dosage was performed.

The intraoperative scintigraphy was performed only in 8 cases by means of the Sentinella 102" (GEM Imaging S.A., Valencia, Spain), a transportable high-definition Gamma Camera integrated to a specific software. An electromechanical arm allows a precise positioning of the gamma camera over the operative field. This device allows an accurate spatial mapping of the radioactivity of the tissues, producing images similar to a conventional scintigraphy and it is able to localize small radioactive areas.

Concerning the value of the diagnostic exams for parathyroid disease, the results of US and MIBI were considered true positive when at least the side (left/right) of the parathyroid affected were concordant with the surgical report, settled as the gold standard.

Statistical analysis

The Cox non-nested model was used to evaluate the statistical association between US or MIBI and surgical report that was considered the gold standard; a p value < 0.05 indicated the statistical significance. The Fisher’s exact test was used to evaluate the connection between the diagnostic results of US versus MIBI; the Cohen K-index was used to evaluate the corresponding degree of its real concordance (Table 1).

We used the logistic regression between the variation rate of i.o. PTH and the dummy variable (recurrence/no recurrence). This relation was calculated with the regression coefficient.

The results of US and MIBI in identifying the side of the enlarged parathyroid gland and the complications rate were expressed as average.

The data were collected in a dedicated database (Microsoft Excel®, Microsoft Corporation, Redmond, WA, USA) and analyzed by a professional statistician.

The IDE RStudio (version: 0.98.945), with the software R, version 3.1.0. (2014.04.10) was used for the statistical analysis.

Results

Regarding the parathyroid disease, in 26 cases (35.6%) US proved to be non-diagnostic; in 5 cases, it was discordant as regards the side, moreover in 2 patients a second enlarged contralateral gland was not identified. Altogether, US indicated an incorrect localization in 9.6%. In 40 patients (54.8%) US identified the exact side of the pathologic parathyroid, of which 32 underwent an exact diagnosis also concerning the level.

Concerning the MIBI, the exam was non-diagnostic in 9 cases (12.3%), discordant concerning the side in 13, and in 4 cases there were a second pathologic contralateral gland that was not identified. Altogether, US indicated an incorrect localization in 9.6%. In 40 patients (54.8%) US identified the exact side of the pathologic parathyroid, of which 32 underwent an exact diagnosis also concerning the level.

Concerning the TD, we observed 24 thyroid carcinomas (23 papillary, 1 follicular; 32.9%), and, in the context of the benign TD, 6 (8.2%) toxic goiters.

The complications observed were: 7 definitive hypoparathyroidism (9.6%) and 3 transient monolateral vocal fold palsy (4.1%). 7 PHPT recurrent or persistent

TABLE 1 - K VALUE INTERPRETATION.

<table>
<thead>
<tr>
<th>K value</th>
<th>Degree of relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.01</td>
<td>Null</td>
</tr>
<tr>
<td>0.01 - 0.20</td>
<td>Very low</td>
</tr>
<tr>
<td>0.21 - 0.40</td>
<td>Low</td>
</tr>
<tr>
<td>0.41 - 0.60</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.61 - 0.80</td>
<td>Considerable</td>
</tr>
<tr>
<td>0.81 - 1.00</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
TABLE 2 - RESULTS.

<table>
<thead>
<tr>
<th></th>
<th>US as regards PHPT</th>
<th>MIBI as regards PHPT</th>
<th>US/MIBI diagnostic/non-diagnostic results (relationship)</th>
<th>Thyroid carcinoma</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-diagnostic</td>
<td>non-diagnostic</td>
<td>p value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>definitive hypoparathyroidism</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>9</td>
<td>0.007</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>35.6%</td>
<td>12.3%</td>
<td><0.05</td>
<td></td>
<td>9.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p value</td>
<td></td>
<td>vocal fold palsy (monolateral, transient)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>incorrect diagnosis</td>
<td>7</td>
<td>17</td>
<td>0.265</td>
<td></td>
<td>4.1%</td>
</tr>
<tr>
<td></td>
<td>9.6%</td>
<td>23.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discordant as regards the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>side</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incomplete because of a</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>second gland was forgotten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>correct for side</td>
<td>40</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54.8%</td>
<td>68.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>correct also for level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cox non-nested model versus surgical report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td>0.73</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohen K index</td>
<td>0.825</td>
<td>0.598</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

US as regards PHPT

- non-diagnostic: 26, 35.6%
- incorrect diagnosis: 7, 9.6%
 - discordant as regards the side: 5
 - incomplete because of a second gland was forgotten: 2
 - correct for side: 40, 54.8%
 - correct also for level: 32

Cox non-nested model versus surgical report

- p value: 0.73, n.s.
- Cohen K index: 0.825

MIBI as regards PHPT

- non-diagnostic: 9, 12.3%
- incorrect diagnosis: 17, 23.3%
 - discordant as regards the side: 13
 - incomplete because of a second gland was forgotten: 4
 - correct for side: 50, 68.5%
 - correct also for level: 39

Cox non-nested model versus surgical report

- p value: 0.81, n.s.
- Cohen K index: 0.598

US/MIBI diagnostic/non-diagnostic results (relationship)

- p value: 0.007, <0.05
- degree of concordance: 0.265

Thyroid carcinoma

- 24, 32.9%

Complications

- definitive hypoparathyroidism: 7, 9.6%
- vocal fold palsy (monolateral, transient): 3, 4.1%
- recurrent/persistent PHPT: 7, 9.6%
- compressive hematoma: none

TABLE 3 - LOGISTIC REGRESSION OF I.O. PTH VALUES.

- rec: recurrence (0.0 = no recurrence; 1.0 = recurrence)
- Var = variation % of i.o. PTH value between the highest and the lowest result

Copyright © 2016 CIC Edizioni Internazionali Unauthorized reproduction of this article is prohibited.
Discussion

The coexistence of PHPT and TD is a well-known nosological entity (5). The prevalence of PHPT in patients suffering from a TD is 3 times the healthy subjects (28) and, on the other hand, the PHPT is very frequently associated with a TD (5). The only available guidelines are dedicated isolately to PHPT or TD, but not to the coincidental entities. Anyway, this association seems to be found increasingly. One of the pathogenic factors invoked is the exposition to ionizing radiations: in irradiated patients, if a PHPT was present, a coexisting thyroid nodule was found in 95% of cases with a high incidence of thyroid carcinoma (30). In non-irradiated patients, both PTH and high serum calcium levels have been implicated in the pathogenesis of the non-medullary thyroid carcinoma (31-33). Anyway, this cancer should be carefully investigated because of its high frequency (29, 30). In our series, a high prevalence of papillary thyroid carcinoma was found. Generally, the diagnosis was a consequence of a fine-needle aspiration biopsy in which a “follicular proliferation” was frequently evidenced. In this occurrence the total thyroidectomy is generally preferred (34, 35). According to our experience, an accurate interpretation of thyroid ultrasonographic findings and, if needed, a biopptic approach to suspicious nodules can help to obtain the diagnosis of malignancy.

The PHPT should be carefully investigated with the aim to highlight this endocrine disorder and to spot the enlarged gland(s) responsible. The low sensitivity and specificity of preoperative parathyroid localization techniques in coexisting thyroid disease is well known (36, 38): the MIBI false-positives could originate by accumulation of the radioactive tracer in thyroid nodules or nodular Hashimoto’s thyroiditis, whereas the false negative ones seem to be the result of the low weight of the enlarged gland(s), superior adenomas or low rate of oxyphil cells (38, 39).

During US exploration, thyroid nodules, especially in multinodular goiters, can be mistaken for parathyroid glands; moreover, they can cause a posterior displacement of adenomas and change in ultrasound tissue penetration; posterior and/or exophytic thyroid nodules and enlarged lymph nodes can look like enlarged parathyroid glands (38, 39).

Finally, both US and MIBI have a poor diagnostic efficacy in the presence of intrathyroid parathyroid adenomas (40). In this specific case, the US-guided fine-needle aspiration biopsy could help to distinguish a thyroid nodule from a parathyroid adenoma, although the reliability of the cytology to identify the parathyroid cells is still controversial (41-43). Concerning this, the FNA-PTH assay seems to be more accurate (20, 42).

Given these assumptions, our study reported the following findings: 1) PHPT and TD are frequently associated; 2) the prevalence of thyroid cancer in this context (>32%) is very considerable; 3) the synergism of US and MIBI in improving the diagnostic efficacy seems at least advantageous, as assumed in different studies (14, 17).

Moreover, the correlation between i.o. PTH drop and cure rate was evaluated. Although a trend in favor of the systematic use of this test was found, no statistical significance was obtained in the sample examined. Anyway the i.o. PTH, in spite of the cost increase (44), if used with the aim to assure the completeness of parathyroid excision proved to be an efficacious tool for improving the success rate of surgery, likewise the treatment of the solitary PHPT, as commonly affirmed (45).

Even though we used the intraoperative minigamama-camera only 8 times, it showed to be efficacious in localizing the enlarged gland and in confirming the completeness of the surgical procedure, as previously affirmed (46). Nevertheless, a larger experience is needed to confirm these results.

As an overview of diagnostic implications, we esteem that, if both thyroidectomy and parathyroid excision are indicated simultaneously, the diagnostic tools available should be put into the field according to the experience and the skills of every working team, considering the poor diagnostic efficacy of a separate exam.

The question is not to perform a minimally invasive focused approach, but for avoiding a prolonged exploration with a doubtful outcome in terms of persistence/recurrence rate. In fact, in a context in which a wide exploration is mandatory, the focused surgical techniques are not feasible and only the minimally invasive video-assisted thyroidectomy and parathyroidectomy are indicated (moreover only in selected cases) because they allow a four-gland exploration (47, 48). The complications mainly consist of transient vocal fold palsy, and in the need of long-term calcium and vitamin D supplementation: the first one could be considered acceptable because its incidence do not differ from the data concerning the thyroideotomy alone reported in literature (49), the second one, with an incidence of less than 10%, should be compared to the large number of detected thyroid carcinomas. These results indicate that simultaneous surgical treatment of thyroid and parathyroid diseases is affordable compared to the two procedures performed separately, given the increase in complication’s rate in case of neck re-exploration (16). Finally, the prevalence of thyroid carcinoma that we found in our series suggest to carefully evaluate any thyroid disease found during a work-up for PHPT.
When a contemporaneous thyroid surgery is indicated, the total thyroidectomy subject to the informed consent is the procedure of choice, considering that it is well tolerated and efficacious for a wide range of situations (50-53).

Conclusions

The suspicion of coexisting TD and PHPT should be kept prior to performing a thyroidectomy or a parathyroid excision alone. Given the high incidence of coexistent TD and PHPT and the relevant prevalence of non-medullary thyroid carcinoma, the thyroid nodules should be carefully evaluated during the preoperative work-up of a PHPT, with the aim to identify a potential malignancy and, conversely, the PHPT should be always investigated in view of a thyroidectomy. According to the data emerging from our experience, it is allowed to state that both MIBI and neck US should be associated in the first evaluation of patients undergoing thyroidectomy and parathyroid excision simultaneously and, if available, each additional intraoperative diagnostic tool can improve the opportunity of localizing an enlarged parathyroid gland. Finally, we can affirm that the complication rate, that is similar to those of the thyroidectomy alone, should be compared with the morbidity of the redo neck surgery.

References

The coexistence of primary hyperparathyroidism and thyroid nodules: should the preoperative work-up of the parathyroid and the thyroid diseases be specifically adjusted?